## metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Bis[ $\mu$ -3-(1*H*-pyrazol-1-yl)benzonitrile- $\kappa^2 N:N'$ ]bis[perchloratosilver(I)]

#### Cao-Yuan Niu,\* Hai-Yan Zhang, Cao-Ling Feng, Xin-Sheng Wan and Chun-Hong Kou

College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China

Correspondence e-mail: niu\_cy2000@yahoo.com.cn

Received 31 July 2008; accepted 23 September 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean  $\sigma$ (C–C) = 0.008 Å; disorder in main residue; *R* factor = 0.042; *wR* factor = 0.114; data-to-parameter ratio = 13.6.

In the title centrosymmetric complex,  $[Ag_2(ClO_4)_2(C_{10}H_7N_3)_2]$ , the unique Ag<sup>I</sup> ion is coordinated by an N atom from a carbonitrile group, an N atom from a symmetry-related pyrazole group and an O atom of a perchlorate ligand to form a distorted T-shaped environment. Two 3-(1*H*-pyrazol-1-yl)benzonitrile ligands each bridge two Ag<sup>I</sup> ions to form a dinuclear complex. In the crystal structure, there are weak Ag···O interactions within the range 2.70–3.01 Å linking dimeric units into layers approximately parallel to (100). The O atoms of the perchlorate ligand are disordered over two sites with occupancies of 0.570 (11) and 0.430 (11), respectively.

#### **Related literature**

For background information, see: Antonioli *et al.* (2006); Bourlier *et al.* (2007); Niu *et al.* (2007); Sumby & Hardie (2005).



#### Experimental

#### Crystal data

 $[Ag_{2}(ClO_{4})_{2}(C_{10}H_{7}N_{3})_{2}]$   $M_{r} = 753.02$ Monoclinic,  $P2_{1}/n$  a = 7.8522 (13) Å b = 10.6086 (17) Å c = 15.322 (2) Å  $\beta = 101.100$  (2)°

#### Data collection

Siemens SMART CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996)  $T_{min} = 0.455$ ,  $T_{max} = 0.558$ (expected range = 0.421-0.517)

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.042$ |
|---------------------------------|
| $wR(F^2) = 0.114$               |
| S = 0.96                        |
| 2833 reflections                |
| 209 parameters                  |

 $V = 1252.5 (3) \text{ Å}^{3}$  Z = 2Mo K\alpha radiation  $\mu = 1.83 \text{ mm}^{-1}$  T = 173 (2) K $0.51 \times 0.47 \times 0.36 \text{ mm}$ 

7721 measured reflections 2833 independent reflections 2180 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.021$ 

| 74 restraints                                              |
|------------------------------------------------------------|
| H-atom parameters constrained                              |
| $\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$ |

## Table 1 Selected geometric parameters (Å, °).

| Ag1–N3 <sup>i</sup>     | 2.154 (6)   | Ag1-O4                                 | 2.495 (6)  |
|-------------------------|-------------|----------------------------------------|------------|
| Ag1-N1                  | 2.198 (4)   | Ag1-O4' <sup>ii</sup>                  | 2.609 (6)  |
| N3 <sup>i</sup> -Ag1-N1 | 147.16 (17) | N1-Ag1-O4' <sup>ii</sup>               | 98.4 (19)  |
| $N3^{i} - Ag1 - O4$     | 105.89 (19) | N3 <sup>i</sup> -Ag1-O4' <sup>ii</sup> | 110.8 (19) |
| N1-Ag1-O4               | 89.96 (19)  |                                        |            |
|                         |             |                                        |            |

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii)  $-x + \frac{3}{2}$ ,  $y - \frac{1}{2}$ ,  $-z + \frac{3}{2}$ .

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1994); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL*.

We are grateful to Mrs Li (Wuhan University) for her assistance with the X-ray crystallographic analysis. We also gratefully acknowledge financial support from the Natural Science Foundation of Henan Province (grant No. 2008B150008) and the Science and Technology Key Task of Henan Province (grant No. 0624040011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2676).

#### References

- Antonioli, B., Bray, D. J., Clegg, J. K., Gloe, K., Gloe, K., Kataeva, O., Lindoy, L. F., McMurtrie, J. C., Steel, P. J., Sumby, C. J. & Wenzel, M. (2006). *Dalton Trans.* pp. 4783–4794.
- Bourlier, J., Hosseini, M. W., Planeix, J.-M. & Kyritsakas, N. (2007). *New J. Chem.* **31**, 25–32.
- Niu, C.-Y., Wu, B.-L., Zheng, X.-F., Zhang, H.-Y., Li, Z.-J. & Hou, H.-W. (2007). *Dalton Trans.* pp. 5710–5713.
- Sheldrick, G. M. (1996). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
Sumby, C. J. & Hardie, M. J. (2005). Angew. Chem. Int. Ed. 44, 6395–6399.

supplementary materials

Acta Cryst. (2008). E64, m1332-m1333 [doi:10.1107/S1600536808030602]

### Bis[ $\mu$ -3-(1*H*-pyrazol-1-yl)benzonitrile- $\kappa^2 N:N'$ ]bis[perchloratosilver(I)]

#### C.-Y. Niu, H.-Y. Zhang, C.-L. Feng, X.-S. Wan and C.-H. Kou

#### Comment

Silver coordination polymers have been widely studied not only for their utility in special functional materials, but also for their fascinating structures derived from variable coordination numbers from 2 to 6 of silver atoms and different conformations around silver metal centres (Sumby & Hardie, 2005; Niu *et al.*, 2007). Nitrogen heterocycle organic compounds with multiple pyridyl, or pyrazole, or carbonitrile nitrogen atoms are good bridging organic ligands in coordination interactions with silver atoms (Antonioli *et al.*, 2006; Bourlier *et al.*, 2007). Herein we communicate the crystal structure of one silver coordination dimer with one asymmetric organic bridging ligand, 3-(1*H*-pyrazol-1-yl)benzonitrile, with carbonitrile and pyrazole coordinating groups.

In the title compound, (I), the central silver ion is coordinated by two nitrogen atoms [N1, N3<sup>i</sup>; Symmetry codes: (i) -x + 1, -y + 1, -z + 2] of carbonitrile and pyrazole groups from two different 3-(1*H*-pyrazol-1-yl)benzonitrile molecule and one oxygen atom [O4] from one perchlorate anion, forming the primary distorted T-shape coordination environment around the silver atom (Fig. 1). The O atoms of the perchlorate ligand are disodered over two sites with maximum and minimum occupancies of 0.57 and 0.43. While an O atom of the major component coordinates to the unique Ag<sup>I</sup> ion, an O atom of the minor component coordinates to a symmetry related Ag<sup>I</sup> ion. The overall effect of the disorder is that two different slightly distorted T-shaped coordination environments are formed with the two Ag—O disorder components being approximately orthogonal to each other (Fig. 3).

In (I), the 3-(1*H*-pyrazol-1-yl)benzonitrile molecule ligand acts as a  $\mu_2$ -bridging ligand. Two ligands each bridge two metal centres through one carbonitrile nitrogen atom and one pyrazole nitrogen atom to form a small centrosymmetric 2+2 Ag<sub>2</sub>L<sub>2</sub> (*L* = ligand) ring as a constructing unit (Fig. 1). The Ag···Ag separation in one ring is about 6.852 (5) Å. There are weak Ag···O interactions between Ag1 and O1 and Ag1 and O3 with the separations of about 2.89 and 3.01 Å, respectively [Ag1···O1' = 2.70 Å]. Supramolecular two-dimensional layers are constructed through the strong Ag—O bonds and weak Ag···O interactions between perchlorate anions and silver atoms of dinuclear rings (Fig. 2). The layers lie approximately parallel to the *bc* plane.

#### **Experimental**

A solution of AgClO<sub>4</sub>.H<sub>2</sub>O (0.023 g, 0.1 mmol) in methanol (10 ml) was carefully layered on a methanol/chloroform solution (5 ml/10 ml) of 3-(1H-pyrazol-1-yl)benzonitrile (0.017 g, 0.1 mmol) in a straight glass tube. About one week later, colourless single crystals of (I) suitable for X-ray analysis were obtained (yield 39%).

#### Refinement

Carbon-bound H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.95 Å and  $U_{iso}(H) = 1.2U_{eq}(C)$ . The oxygen atoms of the perchlorate anion are disordered over two positions. All Cl—O bond lengths

were restrained to 1.44 (1) Å. The final difference Fourier map had a highest peak at 0.84 Å from atom O4 and a deepest hole at 0.73 Å from atom Ag1, but were otherwise featureless.

#### **Figures**



Fig. 1. A view of the Ag<sup>I</sup> coordination environment in the dimeric structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) -x + 1, -y + 1, -z + 2] The minor component of disorder is shown with open bonds.



Fig. 2. Part of the crystal structure of (I). Dashed lines show weak Ag...O interactions. The minor component of disorder is not shown.



Fig. 3. Part of the crystal structure showing the major and minor (dashed bonds) components of disorder.

> 2833 independent reflections 2180 reflections with  $I > 2\sigma(I)$

 $R_{\rm int} = 0.021$ 

### Bis[ $\mu$ -3-(1*H*-pyrazol-1-yl)benzonitrile- $\kappa^2 N:N'$ ]bis[perchloratosilver(I)]

| Crystal data                      |                                              |
|-----------------------------------|----------------------------------------------|
| $[Ag_2(ClO_4)_2(C_{10}H_7N_3)_2]$ | $F_{000} = 736$                              |
| $M_r = 753.02$                    | $D_{\rm x} = 1.997 {\rm ~Mg~m}^{-3}$         |
| Monoclinic, $P2_1/n$              | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn               | Cell parameters from 3269 reflections        |
| <i>a</i> = 7.8522 (13) Å          | $\theta = 2.7 - 27.5^{\circ}$                |
| <i>b</i> = 10.6086 (17) Å         | $\mu = 1.84 \text{ mm}^{-1}$                 |
| c = 15.322 (2) Å                  | T = 173 (2) K                                |
| $\beta = 101.100 \ (2)^{\circ}$   | Prism, colourless                            |
| V = 1252.5 (3) Å <sup>3</sup>     | $0.51\times0.47\times0.36~mm$                |
| Z = 2                             |                                              |
|                                   |                                              |

#### Data collection

| Siemens SMART CCD                        |
|------------------------------------------|
| diffractometer                           |
| Radiation source: fine-focus sealed tube |
| Monochromator: graphite                  |

sup-2

| T = 173(2)  K                                                  | $\theta_{max} = 27.5^{\circ}$ |
|----------------------------------------------------------------|-------------------------------|
| $\phi$ and $\omega$ scans                                      | $\theta_{min} = 2.7^{\circ}$  |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -10 \rightarrow 10$      |
| $T_{\min} = 0.455, T_{\max} = 0.558$                           | $k = -13 \rightarrow 9$       |
| 7721 measured reflections                                      | $l = -17 \rightarrow 19$      |

#### Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.042$                                | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.114$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 1.7339P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| <i>S</i> = 0.96                                                | $(\Delta/\sigma)_{\rm max} < 0.001$                                                 |
| 2833 reflections                                               | $\Delta \rho_{max} = 0.75 \text{ e } \text{\AA}^{-3}$                               |
| 209 parameters                                                 | $\Delta \rho_{min} = -0.59 \text{ e } \text{\AA}^{-3}$                              |
| 74 restraints                                                  | Extinction correction: none                                                         |
| Primary atom site location: structure-invariant direct methods |                                                                                     |

Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

| Fractional atomic coordinates and isotropic or equivalent isotropic displacement part | meters (Å <sup>2</sup> ) |
|---------------------------------------------------------------------------------------|--------------------------|
|---------------------------------------------------------------------------------------|--------------------------|

|     | x            | у            | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ | Occ. (<1)  |
|-----|--------------|--------------|-------------|---------------------------|------------|
| Ag1 | 0.76740 (6)  | 0.39146 (4)  | 0.86430 (3) | 0.07794 (19)              |            |
| N1  | 1.0182 (5)   | 0.3203 (4)   | 0.9364 (2)  | 0.0701 (10)               |            |
| N2  | 1.0408 (5)   | 0.2463 (4)   | 1.0104 (2)  | 0.0651 (9)                |            |
| N3  | 0.4622 (7)   | 0.5000 (5)   | 1.1304 (3)  | 0.0911 (14)               |            |
| Cl1 | 0.84901 (17) | 0.60883 (10) | 0.70970 (7) | 0.0661 (3)                |            |
| 01  | 0.7551 (17)  | 0.6867 (11)  | 0.7615 (9)  | 0.135 (6)                 | 0.570 (11) |
| O2  | 0.7442 (18)  | 0.5787 (12)  | 0.6285 (7)  | 0.202 (8)                 | 0.570 (11) |
| O3  | 0.9945 (14)  | 0.6862 (10)  | 0.6941 (9)  | 0.176 (6)                 | 0.570 (11) |
| O4  | 0.9186 (10)  | 0.5048 (6)   | 0.7585 (5)  | 0.086 (3)                 | 0.570 (11) |
| 01' | 0.720 (2)    | 0.5094 (13)  | 0.7054 (9)  | 0.183 (8)                 | 0.430 (11) |
| O2' | 0.8668 (17)  | 0.6337 (11)  | 0.6228 (5)  | 0.107 (5)                 | 0.430 (11) |

## supplementary materials

| 1.0098 (17) | 0.5589 (15)                                                                                                                                                                                                                                                                                         | 0.7614 (8)                                                                                                                                                                                                                                                                                                                                                                                                 | 0.179 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.430 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.7999 (18) | 0.7139 (10)                                                                                                                                                                                                                                                                                         | 0.7552 (7)                                                                                                                                                                                                                                                                                                                                                                                                 | 0.085 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.430 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.1968 (7)  | 0.1905 (5)                                                                                                                                                                                                                                                                                          | 1.0250 (3)                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0783 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.2412      | 0.1350                                                                                                                                                                                                                                                                                              | 1.0726                                                                                                                                                                                                                                                                                                                                                                                                     | 0.094*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.2802 (7)  | 0.2279 (6)                                                                                                                                                                                                                                                                                          | 0.9589 (4)                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0815 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.3928      | 0.2041                                                                                                                                                                                                                                                                                              | 0.9510                                                                                                                                                                                                                                                                                                                                                                                                     | 0.098*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.1662 (7)  | 0.3073 (5)                                                                                                                                                                                                                                                                                          | 0.9066 (3)                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0782 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.1897      | 0.3484                                                                                                                                                                                                                                                                                              | 0.8551                                                                                                                                                                                                                                                                                                                                                                                                     | 0.094*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.9047 (6)  | 0.2323 (4)                                                                                                                                                                                                                                                                                          | 1.0594 (3)                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0628 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.8791 (8)  | 0.1159 (5)                                                                                                                                                                                                                                                                                          | 1.0957 (3)                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0760 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.9520      | 0.0468                                                                                                                                                                                                                                                                                              | 1.0885                                                                                                                                                                                                                                                                                                                                                                                                     | 0.091*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.7462 (8)  | 0.1014 (5)                                                                                                                                                                                                                                                                                          | 1.1426 (4)                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0865 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.7288      | 0.0219                                                                                                                                                                                                                                                                                              | 1.1681                                                                                                                                                                                                                                                                                                                                                                                                     | 0.104*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.6402 (8)  | 0.2000 (6)                                                                                                                                                                                                                                                                                          | 1.1527 (3)                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0802 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.5488      | 0.1893                                                                                                                                                                                                                                                                                              | 1.1846                                                                                                                                                                                                                                                                                                                                                                                                     | 0.096*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.6672 (7)  | 0.3159 (5)                                                                                                                                                                                                                                                                                          | 1.1158 (3)                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0674 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.8030 (6)  | 0.3330 (4)                                                                                                                                                                                                                                                                                          | 1.0700 (3)                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0626 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.8240      | 0.4133                                                                                                                                                                                                                                                                                              | 1.0468                                                                                                                                                                                                                                                                                                                                                                                                     | 0.075*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.5544 (8)  | 0.4191 (6)                                                                                                                                                                                                                                                                                          | 1.1244 (3)                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0762 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | $\begin{array}{c} 1.0098 \ (17) \\ 0.7999 \ (18) \\ 1.1968 \ (7) \\ 1.2412 \\ 1.2802 \ (7) \\ 1.3928 \\ 1.1662 \ (7) \\ 1.1897 \\ 0.9047 \ (6) \\ 0.8791 \ (8) \\ 0.9520 \\ 0.7462 \ (8) \\ 0.7288 \\ 0.6402 \ (8) \\ 0.5488 \\ 0.6672 \ (7) \\ 0.8030 \ (6) \\ 0.8240 \\ 0.5544 \ (8) \end{array}$ | 1.0098(17) $0.5589(15)$ $0.7999(18)$ $0.7139(10)$ $1.1968(7)$ $0.1905(5)$ $1.2412$ $0.1350$ $1.2802(7)$ $0.2279(6)$ $1.3928$ $0.2041$ $1.1662(7)$ $0.3073(5)$ $1.1897$ $0.3484$ $0.9047(6)$ $0.2323(4)$ $0.8791(8)$ $0.1159(5)$ $0.9520$ $0.0468$ $0.7462(8)$ $0.1014(5)$ $0.7288$ $0.2000(6)$ $0.5488$ $0.1893$ $0.6672(7)$ $0.3159(5)$ $0.8030(6)$ $0.3330(4)$ $0.8240$ $0.4133$ $0.5544(8)$ $0.4191(6)$ | 1.0098(17) $0.5589(15)$ $0.7614(8)$ $0.7999(18)$ $0.7139(10)$ $0.7552(7)$ $1.1968(7)$ $0.1905(5)$ $1.0250(3)$ $1.2412$ $0.1350$ $1.0726$ $1.2802(7)$ $0.2279(6)$ $0.9589(4)$ $1.3928$ $0.2041$ $0.9510$ $1.1662(7)$ $0.3073(5)$ $0.9066(3)$ $1.1897$ $0.3484$ $0.8551$ $0.9047(6)$ $0.2323(4)$ $1.0594(3)$ $0.8791(8)$ $0.1159(5)$ $1.0957(3)$ $0.9520$ $0.0468$ $1.0885$ $0.7462(8)$ $0.1014(5)$ $1.1426(4)$ $0.7288$ $0.2000(6)$ $1.1527(3)$ $0.5488$ $0.1893$ $1.1846$ $0.6672(7)$ $0.3159(5)$ $1.1158(3)$ $0.8030(6)$ $0.3330(4)$ $1.0700(3)$ $0.8240$ $0.4133$ $1.0468$ $0.5544(8)$ $0.4191(6)$ $1.1244(3)$ | 1.0098(17) $0.5589(15)$ $0.7614(8)$ $0.179(9)$ $0.7999(18)$ $0.7139(10)$ $0.7552(7)$ $0.085(4)$ $1.1968(7)$ $0.1905(5)$ $1.0250(3)$ $0.0783(13)$ $1.2412$ $0.1350$ $1.0726$ $0.094*$ $1.2802(7)$ $0.2279(6)$ $0.9589(4)$ $0.0815(14)$ $1.3928$ $0.2041$ $0.9510$ $0.098*$ $1.1662(7)$ $0.3073(5)$ $0.9066(3)$ $0.0782(14)$ $1.1897$ $0.3484$ $0.8551$ $0.094*$ $0.9047(6)$ $0.2323(4)$ $1.0594(3)$ $0.0628(11)$ $0.8791(8)$ $0.1159(5)$ $1.0957(3)$ $0.0760(13)$ $0.9520$ $0.0468$ $1.0885$ $0.091*$ $0.7462(8)$ $0.1014(5)$ $1.1426(4)$ $0.865(17)$ $0.7288$ $0.2000(6)$ $1.1527(3)$ $0.0802(15)$ $0.5488$ $0.1893$ $1.1846$ $0.096*$ $0.6672(7)$ $0.3159(5)$ $1.1158(3)$ $0.0674(11)$ $0.8030(6)$ $0.3330(4)$ $1.0700(3)$ $0.0626(10)$ $0.8240$ $0.4133$ $1.0468$ $0.075*$ $0.5544(8)$ $0.4191(6)$ $1.1244(3)$ $0.0762(14)$ |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$   | $U^{22}$   | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|------------|------------|-------------|--------------|-------------|--------------|
| Ag1 | 0.0955 (3) | 0.0756 (3) | 0.0665 (3)  | -0.0075 (2)  | 0.0251 (2)  | 0.00463 (17) |
| N1  | 0.086 (3)  | 0.074 (2)  | 0.0521 (19) | -0.016 (2)   | 0.0166 (18) | 0.0037 (17)  |
| N2  | 0.083 (3)  | 0.063 (2)  | 0.0512 (19) | -0.0112 (19) | 0.0176 (18) | -0.0030 (16) |
| N3  | 0.103 (4)  | 0.095 (3)  | 0.084 (3)   | -0.004 (3)   | 0.039 (3)   | 0.000 (3)    |
| Cl1 | 0.0891 (8) | 0.0551 (6) | 0.0545 (6)  | -0.0027 (5)  | 0.0151 (5)  | 0.0009 (4)   |
| 01  | 0.158 (10) | 0.110 (9)  | 0.157 (10)  | 0.023 (7)    | 0.079 (8)   | 0.002 (7)    |
| O2  | 0.254 (15) | 0.164 (11) | 0.138 (11)  | 0.034 (10)   | -0.087 (11) | -0.050 (9)   |
| 03  | 0.217 (12) | 0.148 (9)  | 0.187 (12)  | -0.070 (8)   | 0.100 (10)  | 0.013 (8)    |
| O4  | 0.096 (4)  | 0.076 (4)  | 0.096 (4)   | 0.022 (3)    | 0.042 (3)   | 0.038 (3)    |
| O1' | 0.246 (15) | 0.191 (13) | 0.128 (11)  | -0.158 (12)  | 0.079 (10)  | -0.058 (9)   |
| O2' | 0.145 (10) | 0.127 (9)  | 0.063 (6)   | 0.017 (7)    | 0.052 (7)   | 0.033 (6)    |
| O3' | 0.164 (13) | 0.198 (15) | 0.135 (11)  | 0.075 (11)   | -0.069 (10) | -0.072 (10)  |
| O4' | 0.125 (9)  | 0.069 (6)  | 0.058 (5)   | 0.016 (6)    | 0.007 (5)   | -0.009 (4)   |
| C1  | 0.091 (4)  | 0.077 (3)  | 0.067 (3)   | 0.000 (3)    | 0.016 (3)   | 0.002 (2)    |
| C2  | 0.082 (3)  | 0.092 (4)  | 0.075 (3)   | -0.010 (3)   | 0.026 (3)   | -0.016 (3)   |
| C3  | 0.094 (4)  | 0.087 (3)  | 0.059 (3)   | -0.025 (3)   | 0.028 (3)   | -0.008 (2)   |
| C4  | 0.080 (3)  | 0.063 (3)  | 0.045 (2)   | -0.016 (2)   | 0.0128 (19) | -0.0027 (18) |
| C5  | 0.101 (4)  | 0.066 (3)  | 0.061 (3)   | -0.011 (3)   | 0.016 (3)   | 0.005 (2)    |
| C6  | 0.115 (5)  | 0.075 (4)  | 0.071 (3)   | -0.025 (3)   | 0.021 (3)   | 0.019 (3)    |
| C7  | 0.093 (4)  | 0.091 (4)  | 0.058 (3)   | -0.024 (3)   | 0.021 (2)   | 0.011 (2)    |
| C8  | 0.078 (3)  | 0.076 (3)  | 0.048 (2)   | -0.014 (2)   | 0.014 (2)   | 0.000 (2)    |
| С9  | 0.084 (3)  | 0.058 (2)  | 0.047 (2)   | -0.015 (2)   | 0.016 (2)   | 0.0004 (18)  |
| C10 | 0.087 (3)  | 0.088 (4)  | 0.058 (3)   | -0.016 (3)   | 0.025 (2)   | 0.001 (2)    |

Geometric parameters (Å, °)

| Ag1—N3 <sup>i</sup>                    | 2.154 (6)   | Cl1—O3     | 1.463 (7) |
|----------------------------------------|-------------|------------|-----------|
| Ag1—N1                                 | 2.198 (4)   | C1—C2      | 1.367 (7) |
| Ag1—O4                                 | 2.495 (6)   | C1—H1      | 0.9500    |
| Ag1—O4' <sup>ii</sup>                  | 2.609 (6)   | C2—C3      | 1.370 (8) |
| N1—C3                                  | 1.335 (7)   | С2—Н2      | 0.9500    |
| N1—N2                                  | 1.362 (5)   | С3—Н3      | 0.9500    |
| N2—C1                                  | 1.340 (7)   | C4—C9      | 1.362 (7) |
| N2—C4                                  | 1.428 (6)   | C4—C5      | 1.384 (6) |
| N3—C10                                 | 1.137 (7)   | C5—C6      | 1.385 (8) |
| N3—Ag1 <sup>i</sup>                    | 2.154 (6)   | С5—Н5      | 0.9500    |
| Cl1—04                                 | 1.385 (5)   | C6—C7      | 1.364 (8) |
| Cl1—O2                                 | 1.390 (6)   | С6—Н6      | 0.9500    |
| Cl1—O2'                                | 1.391 (6)   | С7—С8      | 1.387 (7) |
| Cl1—O4'                                | 1.407 (7)   | С7—Н7      | 0.9500    |
| Cl1—O1                                 | 1.442 (7)   | C8—C9      | 1.396 (6) |
| Cl1—O1'                                | 1.453 (7)   | C8—C10     | 1.430 (8) |
| Cl1—O3'                                | 1.455 (7)   | С9—Н9      | 0.9500    |
| N3 <sup>i</sup> —Ag1—N1                | 147.16 (17) | O4'—Cl1—O3 | 86.2 (8)  |
| N3 <sup>i</sup> —Ag1—O4                | 105.89 (19) | O1—Cl1—O3  | 105.4 (6) |
| N1—Ag1—O4                              | 89.96 (19)  | O1'—Cl1—O3 | 163.3 (7) |
| N1—Ag1—O4' <sup>ii</sup>               | 98.4 (19)   | O3'—Cl1—O3 | 70.7 (9)  |
| N3 <sup>i</sup> —Ag1—O4' <sup>ii</sup> | 110.8 (19)  | Cl1—O4—Ag1 | 123.1 (4) |
| C3—N1—N2                               | 104.1 (4)   | N2—C1—C2   | 107.5 (5) |
| C3—N1—Ag1                              | 128.2 (3)   | N2—C1—H1   | 126.2     |
| N2—N1—Ag1                              | 125.2 (3)   | С2—С1—Н1   | 126.2     |
| C1—N2—N1                               | 111.2 (4)   | C1—C2—C3   | 105.1 (5) |
| C1—N2—C4                               | 128.2 (4)   | C1—C2—H2   | 127.5     |
| N1—N2—C4                               | 120.5 (4)   | С3—С2—Н2   | 127.5     |
| C10—N3—Ag1 <sup>i</sup>                | 163.0 (5)   | N1—C3—C2   | 112.1 (5) |
| O4—Cl1—O2                              | 113.8 (6)   | N1—C3—H3   | 123.9     |
| O4—Cl1—O2'                             | 124.4 (6)   | С2—С3—Н3   | 123.9     |
| O2—Cl1—O2'                             | 48.6 (6)    | C9—C4—C5   | 121.2 (4) |
| O4—Cl1—O4'                             | 118.8 (6)   | C9—C4—N2   | 119.8 (4) |
| O2—Cl1—O4'                             | 117.0 (8)   | C5—C4—N2   | 119.0 (5) |
| O2'—Cl1—O4'                            | 114.3 (6)   | C4—C5—C6   | 119.3 (5) |
| O4—Cl1—O1                              | 110.5 (6)   | С4—С5—Н5   | 120.3     |
| O2—Cl1—O1                              | 110.3 (7)   | С6—С5—Н5   | 120.3     |
| O2'—Cl1—O1                             | 125.1 (8)   | C7—C6—C5   | 120.7 (5) |
| O4—Cl1—O1'                             | 69.2 (7)    | С7—С6—Н6   | 119.6     |
| O2—Cl1—O1'                             | 60.4 (7)    | С5—С6—Н6   | 119.6     |
| O2'—Cl1—O1'                            | 106.9 (6)   | C6—C7—C8   | 119.3 (5) |
| O4'—Cl1—O1'                            | 110.1 (7)   | С6—С7—Н7   | 120.4     |
| 01—Cl1—O1'                             | 90.9 (9)    | С8—С7—Н7   | 120.4     |
| O2—Cl1—O3'                             | 134.9 (8)   | C7—C8—C9   | 120.8 (5) |

## supplementary materials

| O2'—Cl1—O3'                 | 110.7 (7)  | C7—C8—C10    | 119.7 (5)  |
|-----------------------------|------------|--------------|------------|
| O4'—Cl1—O3'                 | 108.1 (6)  | C9—C8—C10    | 119.5 (4)  |
| O1—C11—O3'                  | 113.0 (8)  | C4—C9—C8     | 118.7 (4)  |
| O1'—C11—O3'                 | 106.5 (7)  | С4—С9—Н9     | 120.7      |
| O4—Cl1—O3                   | 107.2 (6)  | С8—С9—Н9     | 120.7      |
| O2—C11—O3                   | 109.2 (7)  | N3—C10—C8    | 178.7 (6)  |
| O2'—C11—O3                  | 60.8 (6)   |              |            |
| N3 <sup>i</sup> —Ag1—N1—C3  | -142.6 (4) | N2-C1-C2-C3  | 0.2 (6)    |
| O4—Ag1—N1—C3                | -22.4 (5)  | N2—N1—C3—C2  | 0.2 (6)    |
| N3 <sup>i</sup> —Ag1—N1—N2  | 58.4 (5)   | Ag1—N1—C3—C2 | -162.3 (4) |
| O4—Ag1—N1—N2                | 178.6 (4)  | C1—C2—C3—N1  | -0.2 (6)   |
| C3—N1—N2—C1                 | 0.0 (5)    | C1—N2—C4—C9  | 144.8 (5)  |
| Ag1—N1—N2—C1                | 163.1 (3)  | N1—N2—C4—C9  | -38.0 (6)  |
| C3—N1—N2—C4                 | -177.7 (4) | C1—N2—C4—C5  | -34.9 (7)  |
| Ag1—N1—N2—C4                | -14.5 (5)  | N1—N2—C4—C5  | 142.3 (4)  |
| O2-Cl1-O4-Ag1               | -88.2 (10) | C9—C4—C5—C6  | 0.9 (7)    |
| O2'-Cl1-O4-Ag1              | -143.1 (8) | N2—C4—C5—C6  | -179.4 (5) |
| O4'-Cl1-O4-Ag1              | 55.7 (10)  | C4—C5—C6—C7  | 0.5 (8)    |
| O1-Cl1-O4-Ag1               | 36.5 (9)   | C5—C6—C7—C8  | -0.4 (8)   |
| O1'-Cl1-O4-Ag1              | -46.4 (7)  | C6—C7—C8—C9  | -1.1 (8)   |
| O3'-Cl1-O4-Ag1              | 138.0 (15) | C6—C7—C8—C10 | 178.7 (5)  |
| O3—Cl1—O4—Ag1               | 150.9 (7)  | C5—C4—C9—C8  | -2.3 (7)   |
| N3 <sup>i</sup> —Ag1—O4—Cl1 | -5.6 (7)   | N2-C4-C9-C8  | 177.9 (4)  |
| N1—Ag1—O4—Cl1               | -156.5 (6) | C7—C8—C9—C4  | 2.4 (7)    |
| N1—N2—C1—C2                 | -0.2 (6)   | C10—C8—C9—C4 | -177.4 (4) |
| C4—N2—C1—C2                 | 177.3 (4)  |              |            |

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+3/2, y-1/2, -z+3/2.





Fig. 2





Fig. 3